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Abstract. We study the concept of bargaining solutions, which has been
studied extensively in two-party settings, in a generalized setting involv-
ing arbitrary number of players and bilateral trade agreements over a
social network. We define bargaining solutions in this setting, and show
the existence of such solutions on all networks under some natural as-
sumptions on the utility functions of the players. We also investigate the
influence of network structure on equilibrium in our model, and note that
approximate solutions can be computed efficiently when the networks are
trees of bounded degree and the parties have nice utility functions.

1 Introduction

Bargaining has been studied extensively by economists and sociologists, and the
most studied setup consists of two parties A and B, with utility functions UA

and UB , negotiating a bilateral deal. The deal, if agreed to by both parties,
yields some fixed profit c. Such a scenario arises if two persons want to go into
some business as partners. A and B also have alternate options αA and αB

respectively, which is the amount of money they receive if the deal is not agreed
upon. The negotiation involves how the profit from this deal is divided between
the two parties. The final share that both parties agree to receive from the deal
constitutes a bargaining solution.

Several bargaining solutions, which are predictions of how the profit will be
shared, have been proposed by economists, the most well-known being the Nash
Bargaining Solution (NBS) [1], which states that the bargaining solution finally
adopted will be one that maximizes the product of the differential utilities of
this deal to each party. The differential utility of A from the deal is the utility
A receives by agreeing to the deal in excess of what it would receive without
agreeing to the deal, that is, UA(x) − UA(αA), where x is the share of profit A
gets from the deal. Similarly, the differential utility of B is UB(c− x)−UB(αb).
NBS seeks to maximize (UA(x) − UA(αA))(UB(c − x) − UB(αb)).

Another extensively studied bargaining solution concept, known as the Pro-
portional Bargaining Solution (PBS), seeks to maximize the minimum of the dif-
ferential utilities of the parties, that is, min{UA(x)−UA(αA),UB(c−x)−UB(αb)}.
There is a crucial axiomatic difference between the concepts of NBS and PBS
– in fact, they are representatives from two broad classes of bargaining solution
concepts that have been formulated and studied in literature (see Chapter 2 of
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[2] for a discussion). One of the major axioms satisfied by NBS is that the bar-
gaining solution should not be altered if the scale of the utility functions of the
parties are altered by arbitrary constant factors. In other words, NBS is based
on the axiom that utilities of different parties cannot be compared. However,
this axiom is highly debated and several solutions that neglect this axiom, and
instead choose to make interpersonal comparison of utility, have been proposed,
and PBS is one of the most extensively studied among these solutions.

In this paper, we consider a generalization of the above two-party setting to
a setting that involves arbitrary number of parties, but where the deals are still
bilateral, and the alternate options are all zero. The parties shall be represented
as vertices of a social network, where the edges represent bilateral deals that shall
be negotiated, and weights on the edges represent the total profits from each deal.
Thus the input to the problem, which we call the network bargaining problem, is
an undirected graph with weights on edges, and an efficiently computable utility
function for every vertex. Different deals may have different profits, which are
represented by weights on edges of the input graph. A solution to the network
bargaining problem is a prediction of how the profits on each edge is divided. We
will primarily be interested in studying the effects of network topology on the
solution, and so we shall often restrict our study to the case where the edges have
unit weight, and all vertices have the same utility function. Effects of network
topology on solutions of various network exchange models have been studied,
theoretically as well as through human subject experiments ([3–6]). Our goal is
to develop a bargaining solution concept for the network bargaining problem,
that will have a strong intuitive justification.

Braun and Gautschi [5] studied the network bargaining problem, and pro-
posed a solution. Their solution is a direct generalization of the weighted Nash
Bargaining Solution for bilateral deals. They assign a numerical bargaining power
to each vertex based solely on its degree and the degrees of its neighbors, and
also assume linear utility functions, and then negotiate each edge independently
according to the bargaining powers. Kleinberg and Tardos [6] studied a variant
of the network bargaining problem, which has the same input as our problem,
but the solution has a restriction that each vertex can agree to a deal with at
most one of its neighbors. They define an equilibrium-based solution, which they
call a balanced outcome, where the agreement on every deal is required to meet
a stability condition. The stability condition used for each edge in [6] is the NBS
in a two-party setting with intuitively defined alternate options and linear util-
ity functions. This model was also studied previously by Cook and Yamagishi
[7]. In contrast to the model of [5], this model allows the equilibrium conditions
and network topology to naturally exhibit bargaining power, instead of directly
assigning a value.

Inspired by the notion of balanced outcomes in [7, 6], our solution for the
network bargaining problem is also an equilibrium-based concept. We propose
that the bargaining solution should be stable, and so no party should be keen
on renegotiating a deal. For an edge e = (u, v), we define the alternate options
of u and v to be the total profits received by u and v, respectively, from deals
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with their other neighbors. The differential utility of the deal on e to u and
v is now intuitively clear (see Section 2 for definition). Renegotiation occurs if
the current division does not satisfy a standard two-party bargaining solution.
In a bargaining state (specifying the division of profits on each edge), the deal
on an edge is stable if the division of profits satisfy the two-party bargaining
solution. We say that a state is an equilibrium if all edges are stable, and this is
our bargaining solution. Depending on the two-party bargaining solution used
for renegotiating edges, we have thus proposed two bargaining solutions, the
NBS equilibrium and PBS equilibrium. These bargaining solutions are formally
defined in Section 2.

A question crucial to the applicability of our model is to characterize struc-
tures (networks and utility functions) in which there exists an equilibrium. In
this paper, we completely characterize the PBS and NBS equilibria on every
social network when all the vertices of the network have linear utility functions
(functions with constant marginal utility). In this case, we show that there is a
unique PBS equilibrium and a unique NBS equilibrium in every social network,
and that the network topology has no influence on the solutions. We also show
that on any network, there exists a PBS equilibrium if all the utility functions
are increasing and continuous. Further, we show that on any network, there ex-
ists an NBS equilibrium if all the utility functions are increasing, concave and
twice differentiable.

The rest of this paper is organized as follows. Section 2 contains a formal
introduction to the model and some basic lemmas that are applicable to two-
party settings. Section 3 characterizes equilibria in our model when the utility
functions are linear. Section 4 contains the proof of existence of PBS and NBS
equilibria on all networks, for broad classes of utility functions. Section 5 pro-
vides some results about the effect of network structure on NBS equilibrium.
And finally, Section 6 briefly describes an efficient algorithm to compute ap-
proximate PBS equilibria on trees with bounded degree and a specific utility
function log(1 + x).

2 Preliminaries

The input to the network bargaining problem consists of an undirected graph
G(V, E) with n vertices and m weighted edges, where vertices represent peo-
ple and edges represent possible bilateral trade deals, and a utility function Uv

for each vertex v. The utility functions are all represented succintly and are
computable in polynomial time.

Let c(e) be the weight of an edge e in G. Let e1, e2 . . . em be an arbitrary
ordering of the edges in E(G). For every edge ei, we assign it an arbitrary
direction, and refer to its end-points as ui and vi, such that ei is directed from
ui to vi. A state of the bargaining model is described by the division of profits
on each edge of the graph. Let x(ui, ei) and x(vi, ei) denote the profits ui and
vi receive from the agreement on the edge ei, respectively. Note that x(vi, ei) =
c(ei) − x(ui, ei). We shall represent a state of the bargaining model as a vector



4 Tanmoy Chakraborty and Michael Kearns

s = (s1, s2 . . . sm) ∈ R
m such that si = x(ui, ei). Note that s uniquely determines

the division of profits on all edges.

Definition 1. Let s ∈ R
m be a state of the bargaining model for a graph G. For

any vertex u and any edge e incident on u, let γs(u) denote the total profit of
a vertex u from all its deals with its neighbors. Let xs(u, e) denote the profit u
gets from the agreement on edge e. Let αs(u, e) = γs(u) − xs(u, e) be the profit
u receives from all its deals except that on e.

If the current state of the bargaining model is s, and e = (u, v) is renegotiated,
then we say that αs(u, e) and αs(v, e) are the alternate options for u and v
respectively, that is, the amount they receive if no agreement is reached on the
deal on e. We shall drop the suffix s if we make a statement for any arbitrary
state, or if the state is clear from the context.

Definition 2. Let s be any state of the bargaining model. Let x be the profit of
u from the deal on e = (u, v). Then, the differential utility of u from this deal
is as(x) = Uu(αs(u, e) + x) − Uu(αs(u, e)), and the differential utility of v from
this deal is bs(x) = Uv(αs(v, e) + c(e) − x) − Uv(αs(v, e)).

Definition 3. Let s be any state of the bargaining model. Define ys(u, e) to be
the profit u would get on the edge e = (u, v) if it is renegotiated (according to
some two-party solution), the divisions on all other edges remaining unchanged.
Also define update(s, e) = |xs(u, e) − ys(u, e)|.

If e is renegotiated according to the Nash Bargaining Solution (NBS), then
ys(u, e) is a value 0 ≤ x ≤ c(e) such that the NBS condition is satisfied, that
is, the function WN (x) = as(x)bs(x) is maximized. Instead, if e is renegoti-
ated according to the Proportional Bargaining Solution (PBS), then ys(u, e) is
a value 0 ≤ x ≤ c(e) such that the PBS condition is satisfied, that is, function
WP (x) = min{as(x), bs(x)} is maximized.

The following lemmas give simpler equivalent conditions for PBS and NBS
under certain assumptions about the utility functions, and are also applicable
to the two-party setting.

Lemma 1. If the utility functions of all vertices are increasing and continuous,
then the PBS condition reduces to the condition as(x) = bs(x), and there is a
unique solution x satisfying this condition.

Lemma 2. Let the utility functions of all vertices be increasing, concave and

twice differentiable,. Moreover, let qs(x) = as(x)
a′

s
(x) , and let rs(x) = − bs(x)

b′
s
(x) . Then

the NBS condition reduces to qs(x) = rs(x), and there is a unique solution x
satisfying this condition.

Definition 4. We say that an edge e is stable in a state s if renegotiating e does
not change the division of profits on e, that is, update(s, e) = 0. We say that a
state s is an equilibrium if all edges are stable. We say that s is an ε-approximate
equilibrium if update(s, e) < ε for all edges e.



Bargaining Solutions in a Social Network 5

We refer to an equilibrium as an NBS equilibrium if the renegotiations satisfy
the NBS condition. We refer to the equilibrium as a PBS equilibrium if the
renegotiations satisfy the PBS condition.

3 Linear Utility Functions: Characterizing All Equilibria

In this section, we characterize all possible NBS and PBS equilibria when all
vertices have linear increasing utility functions, for every vertex v. Braun and
Gautschi [5] make this assumption in their model, and so do Kleinberg and
Tardos [6].

We show that in our model, if we make this assumption, there is a unique
NBS equilibrium and a unique PBS equilibrium, and network topology has no
influence on the division of profits on the deals at equilibrium. The following two
theorems formalise these observations. Their proofs are simple, and are omitted
due to lack of space.

Theorem 1. Suppose all vertices have linear increasing utility functions. Then
there is a unique NBS equilibrium, in which the profit on every edge is divided
equally between its two end-points.

Theorem 2. Suppose all vertices have linear increasing utility functions. Let
Ui(x) = kix + li ∀i ∈ V (G). Then there is a unique PBS equilibrium, such that
for any edge e = (u, v), xs(u, e) = c(e) kv

ku+kv

.

4 Existence of Equilibrium for General Utility Functions

We now turn our focus towards non-linear utility functions. In this section, we
prove that PBS and NBS equilibria exist on all graphs, when the utility functions
satisfy some natural conditions. The proofs use the Brouwer fixed point theorem,
and is similar to the proof of existence of mixed Nash equilibrium in normal form
games.

Theorem 3. PBS equilibrium exists on any social network when all utility func-
tions are increasing and continuous. NBS equilibrium exists on any social net-
work when all utility functions are increasing, concave and twice differentiable.

Essentially, it is sufficient for the utility functions to satisfy the following
general condition of continuity:

Condition 1. Let s be any state of the bargaining model, and e = (u, v) be
an edge. For every ε > 0, there exists δ > 0 such that for any state t such that
|αt(u, e)−αs(u, e)| < δ and |αt(v, e)−αs(v, e)| < δ, we have |yt(u, e)−ys(u, e)| <
ε.

Note that ys(u, e) and yt(u, e) are influenced both by the utility functions as
well as the two-party solution concept that is used (NBS or PBS). Thus whether
Condition 1 holds will depend on whether the renegotiations follow the NBS or
the PBS condition, and also on the utility functions.
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Lemma 3. If Condition 1 holds for the NBS solution concept or the PBS solu-
tion concept, then NBS or PBS equilibrium exists, respectively.

Proof. We define a function f : [0, 1]m → [0, 1]m that maps every state s to
another state f(s). Given s, we can construct the unique solution t such that
the deal on an edge e = (u, v) in t is the renegotiated deal of e in s, that is,
xt(u, e) = ys(u, e). We define f(s) to be t. Thus, f(s) is the “best-response”
vector for s.

Clearly, s is an ε-approximate equilibrium if and only if ||s− f(s)||∞ < ε. In
particular, s is an equilibrium if and only if f(s) = s, that is, s is a fixed point
of f . Also, [0, 1]m is a closed, bounded and convex set. So if f were continuous,
then we can immediately use Brouwer fixed point theorem to deduce that the
equilibrium exists. Thus the following claim completes the proof. ut

Claim. f is continuous if and only if Condition 1 holds.

Proof. Suppose Condition 1 holds for some ε and δ. Thus, if ||s − t||∞ < δ/n,
then |αt(u, e) − αs(u, e)| < δ and |αt(v, e) − αs(v, e)| < δ, so, by Condition 1,
|yt(u, e) − ys(u, e)| < ε, and thus ||f(s) − f(t)||∞ < ε. Since there exists a δ for
every ε > 0, so f is continuous.

Now suppose f is continuous. Let ε > 0. Then there exists δ > 0 such that
for any solution t, if ||s− t||∞ < δ, then ||f(s)− f(t)||∞ < ε, which implies that
coordinatewise for every edge e, we have |yt(u, e) − ys(u, e)| < ε. Since this is
true for all ε > 0, Condition 1 holds. ut

Lemma 4. Condition 1 holds for all increasing, continuous utility functions
when renegotiations follow the PBS condition.

Proof. Let s be any state of the bargaining model and let e = (u, v) be any edge.
Here, Lemma 1 is applicable. Let h(s, x) = as(x)−bs(x). Also, let gs(x) = h(s, x)
be a function defined on a particular state s. Note that gs is an increasing,
continuous function on the domain [0, c(e)], gs(0) < 0 and gs(c(e)) > 0. The
renegotiated value ys(u, e) is the unique zero of gs(x) between 0 and c(e).

Let y = ys(u, e) be the zero of gs. Let η = max{|gs(y− ε)|, |gs(y + ε)|}. Then,
since gs is increasing, η > 0, and for all x ∈ [0, c(e)] \ (y − ε, y + ε), |gs(x)| ≥ η.

Now, observe that h(s, x) is dependent on αs(u, e), αs(v, e) and x only, and is
continuous in all three of them when the utility functions are continuous. Thus,
there exists δ > 0 such that for any state t where |αs(u, e) − αt(u, e)| < δ and
|αs(v, e) − αt(v, e)| < δ, we have |h(s, x) − h(t, x)| < η ∀x ∈ [0, c(e)], that is
|gt(x)− gs(x)| < η. This implies that gt(x) 6= 0 for all x ∈ [0, c(e)] \ (y− ε, y + ε),
and so the zero of gt, which is yt(u, e), lies in the range (y − ε, y + ε). ut

Lemma 5. Condition 1 holds for all increasing, concave and twice differentiable
utility functions when renegotiations follow the NBS condition.

Proof. Let s be any state of the bargaining model and let e = (u, v) be any edge.
Here, Lemma 2 is applicable. Let h(s, x) = qs(x)−rs(x). Also, let gs(x) = h(s, x).
The rest of the proof identically follows that of Lemma 4. ut

Combining Lemmas 3, 4 and 5, we get Theorem 3.
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5 Effect of Network Structure on NBS Equilibrium

In this section, we shall study the effect of network topology on NBS equilibrium.
In the rest of this section, we shall assume here that all vertices have the same
utility function U(x), and that the deal on every edge has unit profit, so that
the network topology is solely responsible for any variation in the distribution of
profits in the NBS equilibrium. We also assume some natural properties of the
utility function, and the following is our main result under these assumptions.

Theorem 4. Let U(x) be the utility function of every vertex, and let all edges
have unit weight. Let U(x) be increasing, twice differentiable and concave. Also,

suppose U(x)−U(0)
U ′(x) < Kx ∀x ∈ [0, 1] for some constant K, and |U ′′(x)| ≤

ε(x)U ′(x) for some decreasing function ε(x). Let s be any NBS equilibrium in
this network. Let e = (u, v) be an edge such that u and v have degree more than
(K + 1)d + 1 for some positive integer d. Then, |xs(u, e) − 1

2 | < ε(d).

Note that the assumptions on the utility function guarantee the existence of
NBS equilibrium. Also note that the function U(x) = xp for some 0 < p < 1
satisfies the conditions of Theorem 4 with K = p−1 and ε(x) = (1 − p)/x. The
function U(x) = log(1 + x) satisfies the conditions of Theorem 4 as well, with
K = 2, since (1 + x) log(1 + x) < (1 + x)x ≤ 2x when x ∈ [0, 1], and ε(x) = 1

1+x
.

To prove the above theorem, we will need the next two lemmas. Their proofs are
technical, and are omitted due to lack of space.

Lemma 6. Let U(x) be increasing, twice differentiable and concave. Also, sup-

pose U(x)−U(0)
U ′(x) < Kx ∀x ∈ [0, 1] Then at an NBS equilibrium s, for every edge

e = (u, v), xs(u, e) ≥ 1
K+1 and xs(v, e) ≥ 1

K+1 .

Lemma 7. Let U(x) be increasing, twice differentiable and concave. Let s be an
NBS equilibrium, e = (u, v) be any edge, and ε > 0. Also, let |U ′′(αs(u, e))| ≤
εU ′(αs(u, e)) and |U ′′(αs(v, e))| ≤ εU ′(αs(v, e)). Then, if u gets x on this agree-
ment at equilibrium (and v gets 1 − x), then |x − 1

2 | < ε.

Proof (of Theorem 4). There are (K + 1)d edges incident on each vertex u and
v excluding (u, v), so Lemma 6 implies that at an NBS equilibrium, αs(u, e) >

1
K+1 (K + 1)d = d and αs(v, e) > 1

K+1 (K + 1)d = d. Since |U ′′(x)| ≤ ε(x)U ′(x)
and ε(x) is decreasing, we put ε = ε(d) < min{ε(αs(u, e)), ε(αs(v, e))} in Lemma
7 to obtain our result. ut

6 Computing Approximate PBS Equilibria on Trees of

Bounded Degree

In this section, as a first step towards settling the computational complexity of
finding an equilibrium in our model, we note that approximate PBS equilibria
can be computed efficiently when the networks are trees of bounded degree and
utility function is same for all vertices and is very specific, as follows.
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Theorem 5. Suppose that the bargaining network is a tree with n vertices and
maximum degree k, and weights on all edges bounded by C, and where all vertices
have the same utility function U(x) = log(1+x). There is an algorithm that com-
putes an ε-approximate PBS equilibrium of this network in time n(Cε−1k)O(k).

Since this algorithm is not central to this paper, and due to lack of space, we
shall only provide its intuition and omit the details. Our algorithm is essentially
a modification of the TreeNash algorithm of Kearns et. al. [8]. It is a dynamic
programming technique on a rooted tree, where computation for the root u of
a subtree can be easily completed if the same computation has been already
completed for the children of u. The algorithm discretizes the division of profits
on each edge to the multiples of some fraction δ = ε/k, and then computes a
table for each subtree, under root u. A typical entry of the table stores whether
there exists an approximate equilibrium in the subtree, given the total profit of
u and its profit from the deal with its parent, and also the deals of u in at least
one such equilibrium, if it exists.

Lemma 8 below is crucial for the correctness of our algorithm. It implies
that the approximation factor achieved by the algorithm is proportional to the
discretization factor δ. The lemma follows quite easily from Lemma 9. Lemma
9 depends heavily on the fact that the utility function is log(1 + x). However,
similar results hold for many other utility functions, and our algorithm can be
modified to apply to any such utility function.

Lemma 8. Let s be an exact equilibrium on any graph of maximum degree at
most k, and let U(x) = log(1+x). Let t be any state with l∞(s, t) = maxm

i=1 |si−
s′i| < δ. Then, t is a kδ-approximate equilibrium.

Lemma 9. Let U(x) = log(1 + x). Let s and t be any two states, and e = (u, v)
be an edge, such that |αt(u, e) − αs(u, e)| < ε1 and |αt(v, e) − αs(v, e)| < ε2. If
we use PBS for renegotiations, then |yt(u, e) − ys(u, e)| < (ε1 + ε2)/2.
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