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Abstract
Differential privacy offers a way to answer queries about sensitive
information while providing strong, provable privacy guarantees,
ensuring that the presence or absence of a single individual in the
database has a negligible statistical effect on the query’s result.
Proving that a given query has this property involves establishing a
bound on the query’s sensitivity—how much its result can change
when a single record is added or removed.

A variety of tools have been developed for certifying that a
given query is differentially private. In one approach, Reed and
Pierce [34] proposed a functional programming language, Fuzz,
for writing differentially private queries. Fuzz uses linear types to
track sensitivity and a probability monad to express randomized
computation; it guarantees that any program with a certain type
is differentially private. Fuzz can successfully verify many useful
queries. However, it fails when the sensitivity analysis depends on
values that are not known statically.

We present DFuzz, an extension of Fuzz with a combination of
linear indexed types and lightweight dependent types. This com-
bination allows a richer sensitivity analysis that is able to certify
a larger class of queries as differentially private, including ones
whose sensitivity depends on runtime information. As in Fuzz, the
differential privacy guarantee follows directly from the soundness
theorem of the type system. We demonstrate the enhanced expres-
sivity of DFuzz by certifying differential privacy for a broad class
of iterative algorithms that could not be typed previously.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; F.3.3 [Theory of computation]: Studies of Program Const-
ructs—Type structure

General Terms Design, Languages, Theory

Keywords differential privacy, type systems, linear logic, depen-
dent types

1. Introduction
An enormous amount of data accumulates in databases every day—
travel reservations, hospital records, location data, etc. This infor-
mation could potentially be very valuable, e.g., for scientific and
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medical research, but much of it cannot be safely released due to
privacy concerns. Moreover, aggregation and anonymization are
not sufficient to safeguard privacy: recent experience with the Net-
flix prize [30], for example, has shown how easy it is to leak sensi-
tive information accidentally, even when the data is carefully sani-
tized before it is released.

Differential privacy [4, 12, 13] is a promising approach to this
problem: it offers strong statistical privacy guarantees for certain
types of queries, even in worst-case scenarios. Intuitively, this is
accomplished by a) admitting only queries whose result does not
depend too much on the data of any single individual, and b) adding
some random noise to the result of each query. Thus, if we pick any
individual I and remove all of I’s data from the database before
answering a query, the probability that the result is any given value
v remains almost the same. This limits the amount of information
that can be learned about a single individual by observing the result
of the query.

Many specific queries have been shown to be differentially
private, including machine learning algorithms such as empirical
risk minimization [5] and k-means, combinatorial optimization
algorithms such as vertex cover and k-medians [18], and many
others. But checking that a given query is differentially private can
be both tedious and rather subtle. The key challenge is to prove an
upper bound on the query’s sensitivity, i.e., the maximum change in
the query’s output that can result from changing the data of a single
individual. (Briefly, higher-sensitivity queries require more noise
to maintain privacy.) Since most data analysts are not experts in
differential privacy, they cannot benefit from its strong guarantees
unless they have access to suitable tools.

The approach we focus on is to provide analysts with a pro-
gramming language for differentially private queries: the analyst
can formulate queries in this language and then submit them to a
special compiler, which determines their “privacy cost” and rejects
them if this cost exceeds a budget that has been specified by the
analyst. This approach is attractive because differential privacy is
compositional; for instance, the privacy cost of a sequence of dif-
ferentially private computations is simply the sum of the individual
costs. Thus, we can reason about large, complex queries by manu-
ally inspecting a few simple primitives and then suitably composing
the analysis results of larger and larger subqueries. This is the basis
of previous systems like PINQ [26], which provides a SQL-like lan-
guage, Airavat [36], which implements a MapReduce framework,
and Fuzz [20, 33, 34], a higher-order functional language.

The analysis in Fuzz is based on a type system [33, 34] that cer-
tifies queries as differentially private via two components: numeric
annotations at the type level to describe the sensitivity of functions
and a probability monad to represent probabilistic computations.
Fuzz can certify many useful queries, but it fails for other impor-
tant kinds of queries, including some fairly simple ones. For in-
stance, iterative algorithms such as k-means can only be analyzed



when the number of iterations is a constant, and there are other
instances (such as a program that computes a cumulative distribu-
tion function for an arbitrary list of cutoffs) where even the type
of the program cannot be expressed in Fuzz! Fuzz fails for these
programs because their overall sensitivities are not simply a static
composition of the sensitivities of subprograms; rather, they depend
on some input data, such as the number of iterations or the list of
numeric cutoffs. Numeric sensitivity annotations are not sufficient
to express such dependencies between input data and sensitivity;
however, as we show in this paper, these dependencies can be ex-
pressed with dependent types.

Dependent types enable static reasoning about information that
will be available to a program only at runtime. But we must make
a choice at the outset regarding the complexity of the dependencies
we wish to support: richer dependencies would expand the range
of queries that can be certified as differentially private, but systems
with rich dependent types tend to require extensive program an-
notations, which would make DFuzz more difficult to use by non-
experts. At the extreme end of this spectrum would be a system
like CertiPriv [3], which can certify a broad range of differentially
private queries but requires the programmer to supply most of the
proof. To preserve our goal of usability by non-experts, we instead
work near the other end, choosing a lightweight form of dependent
types that requires few annotations but still yields a powerful anal-
ysis.

We introduce a language called DFuzz—Dependent Fuzz—that
combines a rich form of type-level sensitivity annotations with
lightweight dependent types. The sensitivity annotations we con-
sider are arithmetic expressions over real numbers. Our dependent
types are a simple form of indexed types, where indices describe
the size of data types and provide the programmer with dependent
pattern matching in the style of Dependent ML [38]. Sensitivity
annotations and dependent types combine well, and the resulting
language possesses strong metatheoretic properties. Most impor-
tantly, our type system (like that of Fuzz) natively captures the con-
cept of differential privacy, since DFuzz enjoys an extension of the
metric preservation property of [33, 34]. To demonstrate the capa-
bilities of DFuzz, we show that it can certify several examples from
the differential privacy literature quite naturally, including Iterative
Database Construction [19], k-means [4], k-medians [18], and the
Cumulative Distribution Function [27].

In summary, we offer the following contributions:

• DFuzz, a core calculus for differential privacy that combines
the earlier sensitivity analysis of Reed and Pierce [34] with
lightweight dependent types inspired by Dependent ML [38]
(Section 3);

• the fundamental metatheory for DFuzz, including an adaptation
of the usual basic metatheory—substitution, preservation and
progress—as well as a generalization of the metric preservation
theorem from [33, 34] (Sections 4 and 5); and

• four example programs that express algorithms from the dif-
ferential privacy literature and can be successfully certified by
DFuzz (Section 6).

We discuss related work in Section 7 and future research directions
in Section 8.

2. Background and Overview
Differential privacy We begin by reviewing some basic defini-
tions. Suppose the private data is collected in a database that con-
tains rows of the same type, and each individual’s data is in a single
row. Let db be the type of such databases, and assume for the mo-

ment that we are interested in real-valued queries. Then the key
definition of differential privacy (based on [13]) is:

2.1 Definition: A randomized function f : db → R is ε-
differentially private if, for all possible sets of outputs S ⊆ R
and for any two databases b, b′ that differ in only one row,

Pr[f(b) ∈ S] ≤ eε · Pr[f(b′) ∈ S].

Intuitively, this means that the presence or absence of one individ-
ual’s data has only a small effect on the distribution of f ’s (ran-
domized) outputs. Here ε is a privacy parameter; the larger ε is, the
more information about individuals is potentially revealed by the
result. For small ε, the factor eε can be thought of as 1 + ε. We will
often refer to ε as the privacy cost of running f .

We can extend the definition to data types other than db and R
if we assign to each data type a metric that measures the distance
between values. We write ` v ∼r v′ : τ to indicate that two values
v and v′ of type τ are at most r apart. Thus we obtain:

2.2 Definition: A randomized function q : τ → σ is ε-differentially
private if, for all sets S of closed values of type σ and for all
v, v′ : τ such that ` v ∼r v′ : τ , we have:

Pr[q(v) ∈ S] ≤ eεrPr[q(v′) ∈ S]

To determine whether a given query has this property, the following
definition is useful:

2.3 Definition: A function f : τ → σ is c-sensitive for c ∈ R≥0 if,
for all v, v′ : τ with ` v ∼r v′ : τ , we have ` f(v) ∼c·r f(v′) : σ.

In other words, a c-sensitive function magnifies changes in its
inputs by at most a factor of c. When a function q is not c-sensitive
for any c ∈ R≥0 in the sense of the above definition, we will refer to
it as∞-sensitive. Real-valued functions with limited sensitivity can
be converted into ε-differentially private queries using the Laplace
mechanism (introduced in [13]). Here, we write Lβ to denote the
Laplace distribution with scaling parameter β.

2.4 Proposition: Let f : db → R be a c-sensitive function, and
let q : db → R be the randomized function q = λb. f(b) + N ,
where N is a random variable distributed according to Lc/ε. Then
q is ε-differentially private.

In other words, the Laplace mechanism converts f into a ran-
domized function q by adding noise from the Laplace distribution.
Note that the parameter of the distribution—the ‘magnitude’ of the
noise—depends on both c and ε: the stronger the privacy require-
ment (smaller ε) and the higher the sensitivity of f (larger c), the
more noise must be added to f ’s result to preserve privacy.

Linear types for differential privacy The key idea behind static
type systems for differential privacy is to provide a compositional
analysis that tracks both the privacy cost ε and the sensitivity c of
a function. For context, we sketch the analysis in Fuzz [33, 34], on
which our work is based.

Fuzz has a linear type system: functions can have types of the
form !rσ( τ , where the modality !r is annotated with a numeric
upper bound r on the function’s sensitivity. For instance, the term
λx.(2 · x) can be given the type !2R ( R to express the fact
that f(x) = 2 · x is 2-sensitive in its argument x.1 Fuzz checks
these types with standard typing judgments of the form Γ ` e : σ,
where the type environment Γ additionally contains hypotheses
about sensitivity. For instance, a typing judgment x : !cσ ` e : τ
means that e can be given type τ if e is at most c-sensitive in the
free variable x.

1 In [33, 34] the symbol ! appears both in types (as here) and in terms (to
help guide typechecking algorithms). Here, for simplicity, we elide uses in
terms.



As an illustration, consider the slightly more complex program
(λz.3 · z + 8)(5 · x) It is easy to see that x : !5R ` 5 · x : R and
` λz.3 · z + 8 : !3R( R, and Fuzz thus uses the typing rule

Γ ` e : !rτ ( σ ∆ ` g : τ

Γ + r∆ ` e g : σ

to infer x : !15R ` (λz.3 · z + 8)(5 · x) : R. This reflects the fact
that 3 · (5 · x) + 8 = 15 · x + 8 is 15-sensitive in x. To turn this
(deterministic) program into a (randomized) differentially private
one, Fuzz introduces a probability monad© and assigns monadic
types to randomized computations. Accordingly, the concept of
sensitivity is generalized so that the privacy cost of a differentially
private function is interpreted as its sensitivity. Specifically, the
type system guarantees that any program that can be given a type
!εdb(©R is differentially private, with privacy cost ε. 2

The full Fuzz type system is described in [33, 34], which also
show how several practical programs can be successfully type-
checked; one of these is k-means clustering, a machine learning
algorithm that takes a list of points and computes centers around
which the points cluster. However, as mentioned above, a key limi-
tation of Fuzz is that its sensitivity annotations are purely numeric.
In the case of k-means clustering, this is a major inconvenience: the
sensitivity depends on the number of iterations of the algorithm, but
Fuzz types cannot express the fact that a function’s sensitivity in
one parameter may depend on the value of another—the only way
out is to hard-code the number of iterations. For instance, in Fuzz a
k-means program performing two iterations can be typed as:

2iter-k-means : !∞L(R⊗R)( !6εBag(R⊗R)( #(L(R⊗R))

This type says that 2iter-k-means is a program that, when provided
with an initial list of centers (of type L(R ⊗ R)), produces a 6ε-
differentially private algorithm that maps a dataset to a new list of
centers. A k-means program that performs a different number of
iterations would have a different type. Worse, in Section 6, we will
see several examples of practical algorithms whose types cannot
be expressed in Fuzz, e.g., the IDC algorithm [19], in which the
desired sensitivity is itself a parameter. This means that we cannot
even add such operations to Fuzz as primitives.

In DFuzz, we overcome this limitation by adding dependent
types. In particular, we add a lightweight form of dependent types
that allow us to give the following type to a general algorithm for
k-means:

k-means : ∀i, k.(!∞N[i](!∞L(R⊗ R)[k]

( !3iεBag(R⊗ R)(#(L(R⊗ R)[k]))

This type gives more precise information about the behavior of
k-means: it says that k-means is a program that, when provided
with a natural number i specifying the number of iterations (the
sensitivity annotation is ∞ since this parameter does not need to
be kept private) and a list of k centers, produces a 3iε-differentially
private algorithm that maps the dataset to a list of k centers. In the
next section, we describe DFuzz’s dependent types in more detail.

3. DFuzz
The main novelty of DFuzz is the way it combines a lightweight
form of dependent types, à la Dependent ML [38], with a sensi-
tivity analysis inspired by the one in [33, 34]. This combination
requires several ingredients, which are formally defined in Fig-
ure 1 (type grammar), Figure 2 (program syntax), Figure 3 (kinding

2 In [34], a fixed value of ε was baked into the metric on distributions. In
contrast, we use the convention from [33], where the privacy parameter ε is
not fixed, and is made explicit in the type annotation.

κ ::= ι | υ (kinds)

Z ::= N[S] | L(τ)[S] | R[R] | P[S] (precise types)

α ::= R | db (basic types)

a ::= ∀i : κ.τ | ∃i : κ.τ (quantified types)

τ ::= a | Z | α | A( τ | #τ (types)

A ::= !Rτ (modal types)

S ::= i | 0 | S + 1 (size terms)

R ::= k | r | S | R+R | R ·R | ∞ (sensitivity terms)

Φ ::= ∅ | S = 0 | S = i+ 1 | Φ ∧ Φ (assumptions)

C ::= S = S | R ≤ R (constraints)

φ ::= ∅ | φ, i : κ (kind environments)

Γ ::= ∅ | Γ, x : A (type environments)

Figure 1. DFuzz Types

p ::= (r1, . . . , rn) (probabilities)

e, g ::= x | λx.e | e e | f | fix x.e (expressions)
| 0 | s e | nil | cons[S](e, e)
| caseN eof 0→ e |x[i] + 1→ e
| caseL eof nil→ e | cons[i](y, x)→ e
| Λi.e | e[I] | pack(e, I) as ∃i : κ.σ
| unpack e as (x, i) in e
| p | return e | {e, (e1, . . . , en)}
| let #x = e in e

v ::= λx.e | f | fix x.e | () (values)
| 0 | s v| nil | cons[S](v, v)
| Λi.e | pack(v, I) as ∃i : κ.σ
| p | return v | {v, (e1, . . . , en)}

s ::= do e | {p, (s1, . . . , sn)} (states)

f ::= do return v | {p, (f1, . . . , fn)} (final states)

Figure 2. DFuzz Syntax

rules), Figure 4 (subtyping rules), Figures 5, 6, 7 (typing rules), and
Figure 8 (selected operational semantics rules). We describe each
of these components below, omitting some secondary details for
brevity. (In particular, we elide some linear data types like ⊗, &,
and ⊕. A full description is available in [14].)

Sizes and sensitivities The special feature of DFuzz types (Fig-
ure 1) is that they can contain size or sensitivity information. This
information is described by means of terms in a small language at
the type level. A size term, written S, is a term that conforms to the
grammar

S ::= i | 0 | S + 1

where i is a size variable. Size terms are simple expressions over
natural numbers; they are used to describe the size of data types. A
sensitivity term, denoted R, is a term that conforms to the grammar

R ::= k | r | S | R+R | R ·R | ∞
where k is a sensitivity variable and r is a non-negative real con-
stant, i.e., r ∈ R≥0. Sensitivity terms are simple expressions that
consist of positive real numbers and the symbol∞; they are used
to describe program sensitivity. An annotation of ∞ means that



φ ` 0 : ι
(k.0)

φ ` ∞ : υ
(k.∞)

φ(i) = κ

φ ` i : κ
(k.Ax)

r ∈ R≥0

φ ` r : υ
(k.R)

φ ` S : ι

φ ` S + 1 : ι
(k.+ 1)

φ ` R1 : υ φ ` R2 : υ

φ ` R1 +R2 : υ
(k.+)

φ ` R1 : υ φ ` R2 : υ

φ ` R1 ·R2 : υ
(k.·)

φ ` S : ι

φ ` S : υ
(k.<:)

Figure 3. Kinding rules

φ; Φ |= σ v σ
(st.R)

φ; Φ |= σ1 v σ2 φ; Φ |= σ2 v σ3

φ; Φ |= σ1 v σ3
(st.T )

φ; Φ |= σ3 v σ1 φ; Φ |= σ2 v σ4

φ; Φ |= σ1 ( σ2 v σ3 ( σ4
(st.()

φ, i : κ; Φ |= σ1 v σ2 i /∈ FSV(Φ)

φ; Φ |= ∀i : κ.σ1 v ∀i : κ.σ2
(st.∀)

φ; Φ |= R2 ≤ R1 φ; Φ |= σ1 v σ2

φ; Φ |= !R1σ1 v !R2σ2
(st.!)

φ, i : κ; Φ |= σ1 v σ2 i /∈ FSV(Φ)

φ; Φ |= ∃i : κ.σ1 v ∃i : κ.σ2
(st.∃)

φ; Φ |= S = S′

φ; Φ |= N[S] v N[S′]
(st.N)

φ; Φ |= S = S′ φ; Φ |= σ v τ
φ; Φ |= L(σ)[S] v L(τ)[S′]

(st.L(σ))

Figure 4. Subtyping rules

φ; Φ; Γ, x : !1σ ` x : σ
(Ax )

φ; Φ; Γ ` e : σ φ; Φ |= σ v τ
φ; Φ; Γ ` e : τ

(v.R)
φ; Φ; Γ ` e : σ φ; Φ |= ∆ v Γ

φ; Φ; ∆ ` e : σ
(v.L)

φ; Φ; Γ, x : !∞σ ` e : σ

φ; Φ;∞ · Γ ` fix x.e : σ
(fix )

φ; Φ; Γ, x : !Rσ ` e : τ

φ; Φ; Γ ` λx.e : !Rσ( τ
(( I)

φ; Φ; Γ ` e : !Rσ( τ φ; Φ; ∆ ` g : σ

φ; Φ; Γ +R ·∆ ` e g : τ
(( E)

Figure 5. Core Typing Rules

φ; Φ; Γ ` e : N[S]

φ; Φ; Γ ` s e : N[S + 1]
(s)

φ; Φ; Γ ` nil : L(σ)[0]
(n)

φ; Φ; Γ ` e : σ φ; Φ; ∆ ` g : L(σ)[S]

φ; Φ; Γ + ∆ ` cons[S](e, g) : L(σ)[S + 1]
(c)

φ; Φ; Γ ` 0 : N[0]
(0)

φ; Φ; Γ ` e : N[S] φ; Φ ∧ S = 0; ∆ ` g1 : σ φ, i : ι; Φ ∧ S = i+ 1; ∆, x : !RN[i] ` g2 : σ

φ; Φ; ∆ +R · Γ ` caseN eof 0→ g1 | x[i] + 1→ g2 : σ
(case)N

φ; Φ; Γ ` e : L(τ)[S] φ; Φ ∧ S = 0; ∆ ` g1 : σ φ, i : ι; Φ ∧ S = i+ 1; ∆, x : !RL(τ)[i], y : !Rτ ` g2 : σ

φ; Φ; ∆ +R · Γ ` caseL eof nil→ g1 | cons(y, x[i])→ g2 : σ
(case)L(τ)

φ, i : κ; Φ; Γ ` e : τ i /∈ FSV(Φ; Γ)

φ; Φ; Γ ` Λi.e : ∀i : κ.τ
(∀I)

φ; Φ; Γ ` e : τ{I/i} φ ` I : κ

φ; Φ; Γ ` pack(e, I) as ∃i : κ.τ : ∃i : κ.τ
(∃I)

φ; Φ; Γ ` e : ∀i : κ.τ φ ` I : κ

φ; Φ; Γ ` e[I] : τ{I/i}
(∀E)

φ; Φ; Γ ` e : ∃i : κ.τ φ, i : κ; Φ; ∆, x : !Rτ ` g : σ i /∈ FSV(Φ; ∆;σ;R)

φ; Φ; ∆ +R · Γ ` unpack e as (x, i) in g : σ
(∃E)

φ; Φ imply f R-sensitive σ → τ

φ; Φ; Γ ` f : !Rσ( τ
(Ext)

Figure 6. Data Types and Polymorphism Typing Rules

φ; Φ; Γ ` e : σ

φ; Φ;∞Γ ` return e : #σ
(#I)

φ; Φ; Γ ` e : #σ φ; Φ; ∆, x : !∞σ ` g : #τ
φ; Φ; Γ + ∆ ` let #x = e in g : #τ

(#E)
φ; Φ; Γ ` (r1, . . . , rn) : P[n]

(P)

φ; Φ; Γ ` e : P[n] φ; Φ; ∆ ` ei : #σ (∀i)
φ; Φ; Γ + ∆ ` {e, (e1, . . . , en)} : #σ

({e})
φ; Φ; Γ ` p : P[n] φ; Φ; ∆ ` si : σ (∀i)

φ; Φ; Γ + ∆ ` {p, (s1, . . . , sn)} : σ
({s}) φ; Φ; Γ ` e : #σ

φ; Φ; Γ ` do e : σ
(do)

Figure 7. Probability Layer Typing Rules



there is no guaranteed bound on the sensitivity. The binary opera-
tors + and · are the symbolic counterparts on sensitivities of sum
and product on values. Their precise meaning is described below.
We will use the metavariable I to range over sizes and sensitivities.

Any size term is also a sensitivity term. This is important for
expressing dependencies between sizes (for example, number of
iterations) and sensitivities (for example, privacy cost). To ensure
the correct behavior of size and sensitivity terms, and to prevent
undesired substitutions, we consider size and sensitivity terms to
be typed as well; to avoid confusion, we refer to the types for size
and sensitivity terms as kinds. DFuzz uses two kinds: ι for size
annotations and υ for sensitivity annotations. Kinds are assigned to
terms via kind judgments of the form

φ ` I : κ

where φ is a kind environment, i.e., a set of kind assignments to
size and sensitivity variables. The rules for deriving the judgment
φ ` I : κ are presented in Figure 3. Notice that we have a subkind
relation on terms that is induced by the rule (k.<:). This relation
allows us to consider size terms as sensitivity terms. For notational
convenience, we will sometime write sizes and sensitivities terms
without making explicit their kind.

We can interpret size terms over the domain N of natural num-
bers and sensitivity terms over the domain R≥0 ∪ {∞} of non-
negative extended real numbers. To interpret expressions with free
variables we need, as usual, a notion of assignment—that is, a map-
ping ρ from size variables to elements of N and from sensitivity
variables to elements of R≥0 ∪ {∞}. We write dom(ρ) for the do-
main of ρ; this is a set of variable-kind mappings of the shape i : κ
where each variable i appears at most once.

Given a term φ ` I : κ and an assignment ρ such that
φ ⊆ dom(ρ), we inductively define the interpretation JIKρ:

• J0Kρ = 0

• JiKρ = ρ(i)

• JS + 1Kρ = JSKρ + 1

• JrKρ = r

• JR1 +R2Kρ = JR1Kρ +̂ JR2Kρ
• JR1 ·R2Kρ = JR1Kρ ·̂ JR2Kρ
• J∞Kρ =∞

where +̂ and ·̂ are the usual sum and product extended to∞:

∞ +̂ r = r +̂∞ =∞ for every r ∈ R≥0 ∪ {∞},
∞ ·̂ r = r ·̂ ∞ =∞ for every r 6= 0, and
∞ ·̂ 0 = 0 ·̂ ∞ = 0

(Note that this definition implicitly coerces size terms—natural
numbers—into real numbers as needed.) The well-definedness of
the interpretation is ensured by the following lemma:

3.1 Lemma: Let φ ` I : κ and φ ⊆ dom(ρ). Then:

• If κ = ι, then JIKρ ∈ N.
• If κ = υ, then JIKρ ∈ R≥0 ∪ {∞}.

Proof: By induction on the derivation proving φ ` S : κ. �

Data types and dependent pattern matching Our syntax of types
offers just two representative algebraic data types: natural numbers
N[S] and lists L(σ)[S] with elements of type σ (see Figure 1). We
could have gone further and included general algebraic datatype
declarations and pattern matching, but this would add to the com-
plexity of the notation without (we believe) raising new conceptual
issues; we leave this generalization to future work.

Intuitively, the size of a natural number corresponds to its value
(we consider a unary encoding of the natural numbers, and we
assume the natural number 0 to be of size 0), and the size of a
list corresponds to the number of elements in it (we assume nil to
be of size 0). Types like N[S] and L(σ)[S] are inhabited only by
terms whose evaluation produces a value of size S (if it terminates).
The approach is reminiscent of Hayashi’s singleton types [21].

To illustrate why size terms are helpful for expressiveness, let
us consider the list data type in more detail. Values of the list
type are built through the constructors nil and cons[S](e, g) (see
Figure 2), where cons carries the size S of the expression g as
additional information. This information is used to support a simple
form of dependent pattern matching: the caseL destructor can,
in addition to the usual term-level pattern matching, also perform
type-level pattern matching. This is described by the following
reduction rule (see Figure 8)

caseL cons[S](e1, e2) of nil→ g1 | cons[i](y, x)→ g2

7→ g2{e1/y}{e2/x}{S/i}
in which the size S is propagated to the term g2. In a similar way,
in the reduction rule (Op-Cases) in Figure 8 for dependent pattern
matching on N[S], the information n is propagated to the term g2.

The data type elimination rules in Figure 6 are crucial to making
this technique work. For instance, the elimination rule for the list
data type

φ; Φ; Γ ` e : L(τ)[S] φ; Φ ∧ S = 0; ∆ ` g1 : σ

φ, i : ι; Φ ∧ S = i+ 1; ∆, x : !RL(τ)[i], y : !Rτ ` g2 : σ

φ; Φ; ∆ +R · Γ ` caseL eof nil→ g1 | cons[i](y, x)→ g2 : σ

adds assumptions (explained in detail below) to the contexts used
to typecheck the two branches of the case construct, reflecting
information gleaned by the case about the size S of the test value
e. In the first branch, it is assumed that S = 0; this extra piece of
information enables us to remember, at the typing judgment level,
that e has been matched to nil. Conversely, in the second branch,
it is assumed that S = i+ 1, giving us a name i for the size of the
tail of the list e, which appears in the type assumed for the pattern
variable x. A similar mechanism is used in the elimination rule for
the N[S] data type.

Assumptions and constraints More formally, a judgment

φ; Φ; Γ ` e : σ

contains, besides the usual environment Γ for term variables and
the kind environment φ, an extra parameter Φ that records the
assumptions under which the typing is obtained. Intuitively, the
expression e can be assigned the type σ for any value of its free
size variables satisfying Φ. Since assumptions Φ record the size
constraints generated by the pattern matching rules, we consider
assumptions that conform to the following grammar:

Φ ::= ∅ | S = 0 | S = i+ 1 | Φ ∧ Φ

An assumption Φ is well defined when it is associated with a kind
environment φ that determines the kinds of the free size variables
in Φ. We write φ ` Φ in this case. Given an assumption φ ` Φ and
an assignment ρ such that φ ⊆ dom(ρ), the interpretation JΦKρ is
defined inductively as follows:

• J∅Kρ = true

• JS = 0Kρ = (JSKρ =̂ 0)

• JS = i+ 1Kρ = (JSKρ =̂ JiKρ +̂ 1)

• JΦ1 ∧ Φ2Kρ = JΦ1Kρ ∧ JΦ2Kρ

where =̂ is equality on natural numbers. The use of assumptions
is crucial for the subtyping relation (Figure 4). Indeed, subtyping



judgments involve judgments of the shape

φ; Φ |= C
where C is a constraint of the form R ≤ R′ or S = S′. The mean-
ing of a constraint C also follows directly from the interpretation of
the size and sensitivity terms it contains. Given an assignment ρ for
the size and sensitivity variables appearing in C, the interpretation
JCKρ is defined inductively as

• JR ≤ R′Kρ = (JRKρ ≤̂ JR′Kρ)
• JS = S′Kρ = (JSKρ =̂ JS′Kρ)

where ≤̂ is the expected extension of ≤ to cover∞. The judgment
φ; Φ |= C asserts that the constraint C is a logical consequences of
the assumption Φ, i.e. for every ρ such that JΦKρ = true we have
JCKρ = true. Analogously, we will also use the notation φ; Φ |=
Ψ to denote the fact that the assumption Ψ is a logical consequence
of the assumption Φ. We will see how these judgments are used
later when we present the subtyping rules in detail.

Generalized sensitivities and the scaling modality Sensitivity
terms are the key ingredients in the sensitivity analysis. They ap-
pear as decorations of the scaling modality !R. The scaling modal-
ity is used to define types with the shape !Rσ, which are used in
turn in function types and in term environments. Suppose that a
given expression e can be assigned the function type !Rσ( τ :

φ; Φ; Γ ` e : !Rσ( τ

Then we know that e is a function that maps elements of type σ to
elements of type τ as long as Φ is satisfied, and that in this case R
is an upper bound on the function’s sensitivity.

Two points merit further explanation. First, a static analysis
cannot always describe the exact sensitivity of a program; we are
always dealing with conservative upper bounds. Second, we say
that R “describes” this upper bound because it is not necessarily
a number: it can depend on size or sensitivity variables from φ,
which can themselves be involved in assumptions from Φ. This
dependency is central to the expressivity of DFuzz.

Modal types also appear in type environments. A typing judg-
ment of the form

φ; Φ;x1 : !R1σ1, . . . , xn : !Rnσn ` e : σ

says that the expression e is a function whose sensitivity in the
ith argument is described by the sensitivity term Ri. Notice that
this means that every function type comes with a sensitivity term
associated to its input type. Indeed, here—unlike [33, 34]—we
are implicitly using the standard linear logic decomposition of the
intuitionistic implication σ → τ = !σ ( τ and the observation
that it suffices to have modal types appearing in negative position.
For convenience, we will similarly use the notation σ → τ as
a shorthand for non-sensitive functions, i.e., functions of a type
!Rσ( τ where JRK =∞.

Modal types can be combined by arithmetic operations

!Rσ+ !Tσ = !R+Tσ and T · !Rσ = !T ·Rσ

and these operations are lifted to type environments. The sum of
two contexts is defined inductively as:

• ∅+ ∅ = ∅
• (Γ, x : A) + (∆, x : B) = (Γ + ∆), x : A+B

• (Γ, x : A) + ∆ = Γ + (∆, x : A) = (Γ + ∆), x : A, if
x 6∈ dom(Γ,∆)

The product of a type environment with a sensitivity term T is:

• T · ∅ = ∅
• T · (Γ, x : A) = T · Γ, x : T ·A

It is worth emphasizing that the sum Γ + ∆ of two type en-
vironments Γ and ∆ is defined only in the case that for each
x ∈ dom(Γ)∩dom(∆) the typeA+B is defined, where x : A ∈ Γ
and x : B ∈ ∆. This in turn requires that there is a type σ such
that A = !R1σ and B = !R2σ. In all the binary rules in Figure 5
we implicitly assume this condition.

A sensitivity term can also appear as the annotation of a pre-
cise type R[R]. This class of types is close in spirit to the data
types N[S] and L(σ)[S], since it classifies terms whose value is
described by R. However, we have no destructor operation for this
kind of type. We will see in Section 5.4 that these types can be used
to dynamically specify the sensitivity of certain operations.

Subtyping and quantifiers The assumptions introduced by pat-
tern matching play a crucial role in the subtyping relationv, which
is defined by the rules in Figure 4. A subtyping judgment has the
shape

φ; Φ ` σ v τ
where φ is a kind environment and Φ is an assumption. Intuitively,
the subtyping relation φ; Φ ` σ v τ says that (1) σ and τ are equal
up to their decorations with size and sensitivity terms, and (2) the
decoration of τ is more permissive than the decoration of σ under
the assumption Φ. One main purpose of the subtyping relation is to
capture the fact that an R-sensitive function is also R′-sensitive for
R ≤ R′. This is ensured by the rule for the scaling modality:

φ; Φ |= R2 ≤ R1 φ; Φ |= σ1 v σ2

φ; Φ |= !R1σ1 v !R2σ2

(st.!)

Indeed, the combination of this rule and the rule for function types

φ; Φ |= σ3 v σ1 φ; Φ |= σ2 v σ4

φ; Φ |= σ1 ( σ2 v σ3 ( σ4
(st.()

(which, as usual, is contravariant in its first argument) ensures that
φ; Φ ` !Rσ ( τ v !R′σ ( τ iff φ; Φ |= R ≤ R′. In other
words, if we can prove that R ≤ R′ under assumption Φ, then
every expression that can be given the type !Rσ ( τ can also be
given the type !R′σ( τ .

Subtyping is also needed for putting the dependent pattern
matching mechanism to work, to unify the contexts and the types
in the two branches of a case rule. This is obtained by using sub-
typing judgments on data types. For instance, for natural numbers
we have a rule

φ; Φ |= S = S′

φ; Φ |= N[S] v N[S′]
(st.N)

that allows us to obtain the type N[S′] from the type N[S] if we
have φ; Φ |= S = S′.

Subtyping can be applied by using the rule (v.R) in Figure 5.
Moreover, it can be extended to type environments: the judgment
φ; Φ |= Γ v ∆ holds if for every x : A ∈ ∆ we have x : B ∈ Γ
and φ; Φ |= B v A. Note that the type environment Γ can contain
variable assignments for variables that do not appear in ∆. Thus
the rule (v.L) in Figure 5 can also be seen as a kind of weakening.

In order to be able to express the size and sensitivity dependen-
cies in a uniform way, , we additionally enrich the type language
with a universal quantifier ∀ and an existential quantifier ∃ over size
and sensitivity variables (Figure 6). For instance, the type

∀i : ι.(N[i]( !iR( R)

can be assigned to a program that, given a value of type N[S],
returns an S-sensitive function of type !SR ( R, for any size
term ` S : ι. Similarly, the type

∀i : ι.(N[i]( ∃k : υ.( !jR( R))



abstracts the sensitivity of the function that is returned when a term
of this type is provided with a value of type N[S]. Finally, the type

∃i : ι.N[i]

is the type of the ordinary natural numbers.

The probability layer To ensure differential privacy, we need to
be able to write probabilistic computations. This is achieved in
DFuzz by considering a grammar of programs with two layers (Fig-
ure 2) . We have an expression layer that contains the constructors
and destructors for each data type, and an additional probability
state layer that contains the program constructions for describing
probabilities over expressions and values. To mediate between the
two layers, we use a monadic type #τ , similar to the one found in
Ramsey and Pfeffer’s stochastic lambda calculus [32].

In order to describe probabilistic states, we need to have prob-
ability vectors p, i.e., lists of real numbers from the interval [0, 1]
that sum up to 1. Probability vectors can be typed by means of
a precise type of the shape P[S], where the size term S describes
the length of the vector. Though S can range over variables, the
typing rules for vectors only use types P[n] indexed by a constant
natural number n. A probabilistic state s then is either an object
of the shape {p, (s1, . . . , sn)} where p is a probabilistic vector,
or an object of the shape do e. Intuitively, the former associates a
discrete probability distribution, described by p, to a list of prob-
abilistic states (s1, . . . , sn), whereas the latter turns an expression
into a probabilistic state. Probabilistic states represent probabilistic
computations in the sense that their evaluation results in final states
that assign probabilities to values. For an example, the state

{(0.2, 0.8), (do return 1,

{(0.5, 0.5), (do return 2,do return 3)})}

is a final state in which the value 1 is returned with probability
0.2 and the values 2 and 3 are each returned with probability
0.8 · 0.5 = 0.4.

We use three monadic expression forms to ensure that only
expressions representing probabilistic computations can be turned
into probabilistic states. The expression return e can be seen as
representing the distribution that deterministically yields e; the
monadic sequencing let #x = e in e′ can be seen as a program
that draws a sample x from the probabilistic computation e and
then continues with the computation e′; and the explicit probabil-
ity construction {e, (e1, . . . , en)} associates an expression e rep-
resenting a probability vector with a list of random computations
(e1, . . . , en). The typing rules (Figure 7) ensure that we consider
only well-formed expressions. In particular, the rule

φ; Φ; Γ ` e : P[n] φ; Φ; ∆ ` ei : #σ (∀i)
φ; Φ; Γ + ∆ ` {e, (e1, . . . , en)} : #σ

({e})

ensures that (1) e represents a probability vector, and (2) every ei is
a probabilistic computation. Notice also that this rule is responsible
for the well-formedness of the probabilistic states. It ensures that
we associate lists of expressions of length n only with probability
vectors of the same length. This is the reason for introducing the
precise type P[n].

As a last remark, notice that the different components of a state
represent independent computations, so, even though evaluation of
expressions is defined sequentially, we define evaluation on states
in parallel.

Sensitivity and primitive operations One last component that is
necessary to make the framework practical is a way to add trusted
primitive operations, i.e., operations that are known to preserve the
properties of the type system. This is intuitively the meaning of the

following typing rule from Figure 6:
φ; Φ imply f R-sensitive σ → τ

φ; Φ; Γ ` f : !Rσ( τ
(Ext)

which says that we can add to DFuzz any primitive operation f of
type !Rσ( τ as long as we know that this operation represents a
mathematical function f that maps values in the type σ to values in
the type τ and that is R-sensitive under the assumption Φ.

At the operational level, the evaluation rules for the primitive
operation f must respect the behavior of the function f . This is
obtained by means of the two following rules (Figure 8):

e 7→ e′

f e 7→ f e′
(Op-Ext-Tr)

f v 7→ f(v)
(Op-Ext)

We can also extend DFuzz with additional primitive types, as long
as they are equipped with a metric that respects the properties we
describe in Section 5.

4. Basic Metatheory
In this section, we develop fundamental properties of DFuzz. In
order to show the usual properties one would expect from our
programming language—type preservation and progress—we ad-
ditionally need to prove some properties that are particular to our
use of size and sensitivity annotations. These will also be useful to
prove the Metric Preservation Theorem in the next section. We give
just proof sketches; full proofs are in [14].

4.1 Properties of Sizes and Sensitivities
As we saw earlier, typing judgments in DFuzz have the form

φ; Φ; Γ ` e : σ

i.e., they are indexed by a set of kind assignments to index variables
φ and an assumption Φ. Intuitively, the fact that the subtyping can
prove statements using the assumptions in Φ is what makes the
dependent pattern matching work: it enables us to recover the same
type from the different branches.

Here, we prove some properties of the typing with respect to
the assumption Φ. The first says that strengthening the assumption
preserves the typing.

4.1.1 Lemma [Assumption Strengthening]: Suppose that φ; Ψ |=
Φ. Then, we have:

1. If φ; Φ |= C, then φ; Ψ |= C.
2. If φ; Φ |= σ v τ , then φ; Ψ |= σ v τ .
3. If φ; Φ; Γ ` e : σ, then φ; Ψ; Γ ` e : σ.
4. If φ; Φ; Γ ` s : σ, then φ; Ψ; Γ ` s : σ.

Proof: (1) follows directly from the transitivity of the logical
implication; (2) follows by induction on the derivation proving
φ; Φ |= σ v τ , using Point 1 when needed. (3) follows by
induction on the derivation proving φ; Φ; Γ ` e : σ, using Point
2 when needed. (4) follows by induction on the derivation proving
φ; Φ; Γ ` s : σ, using Point 3 when needed. �

The environment φ can contain free size and sensitivity variables;
these can be thought of as placeholders for any size or sensitivity
index term, and they can be instantiated with a concrete index term
when necessary. This is captured by the next lemma:

4.1.2 Lemma [Instantiation]:

1. If φ, i : κ; Φ |= C, then, for every φ ` I : κ, we have
φ; Φ{I/i} |= C{I/i}.

2. If φ, i : κ; Φ |= σ v τ , then, for every φ ` I : κ, we have
φ; Φ{I/i} |= σ{I/i} v τ{I/i}.



(caseN 0 of 0→ e1 | x[i] + 1→ e2) 7→ e1

(Op-Case0)
(caseN snof 0→ e1 | x[i]→ e2) 7→ e2{n/x}{n/i}

(Op-Cases)

e 7→ e′

(caseL eof nil→ e1 | cons[i](x, y)→ e2) 7→ (caseL e
′ of nil→ e1 | cons[i](x, y)→ e2)

(Op-Case-List-Tr)

e 7→ e′

f e 7→ f e′
(Op-Ext-Tr)

(caseL nilof nil→ e1 | cons(x, y[i])→ e2) 7→ e1

(Op-Casenil) f v 7→ f(v)
(Op-Ext)

(caseL cons[S](v, w) of e1 | cons(x, y[i]).e2) 7→ e2{v/x}{w/y}{S/i}
(Op-Casec)

(fix x.e)v 7→ e{fix x.e/x}v
(Op-fix()

(fix x.e)[I] 7→ e{fix x.e/x}[I]
(Op-fix∀)

e 7→ e′

unpack e as (x, i) in g 7→ unpack e′ as (x, i) in g
(Op-∃-Tr-1)

e 7→ e′

pack(e, I) as ∃i : κ.σ 7→ pack(e′, I) as ∃i : κ.σ
(Op-∃-Tr-2)

unpack (pack(v, I) as ∃i : κ.σ) as (x, i) in e 7→ e{I/i}{v/x}
(Op-∃)

e 7→ e′

return e 7→ return e′
(Op-Return-Tr) e 7→ e′

{e, (e1, . . . , en)} 7→ {e′, (e1, . . . , en)}
(Op-P-Exp-Tr)

e 7→ e′

let #x = e in e0 7→ let #x = e′ in e0

(Op-#-Tr)
let #x = return v in e′ 7→ e′{v/x}

(Op-#-Return-Tr)

let #x = {p, (ei)i∈1...n} in e′ 7→ {p, (let #x = ei in e
′)i∈1...n}

(Op-#)
do {p, (ei)i∈1...n} 7→ {p, (do ei)i∈1...n}

(Op-Do)

e 7→ e′

do e 7→ do e′
(Op-Do-Tr)

∅ 6= I ⊆ 1 . . . n si 7→ s′i sj = s′j = fj (∀i ∈ I, j 6∈ I)

{p, (si)i∈1...n} 7→ {p, (s′i)i∈1...n}
(Op-P-State-Tr)

Figure 8. Selected Evaluation Rules

3. If φ, i : κ; Φ; Γ ` e : σ, then, for every φ ` I : κ, we have
φ; Φ{I/i}; Γ{I/i} ` e{I/i} : σ{I/i}.

4. If φ, i : κ; Φ; Γ ` s : σ, then, for every φ ` I : κ, we have
φ; Φ{I/i}; Γ{I/i} ` s{I/i} : σ{I/i}.

Proof: (1) follows directly from the definition of constraint satis-
fiability; (2) follows by induction on the derivation proving φ, i :
κ; Φ |= σ v τ , using Point 1 when needed. (3) follows by induc-
tion on the derivation proving φ, i : κ; Φ; Γ ` e : σ, using Point
2 when needed. (4) follows by induction on the derivation proving
φ, i : κ; Φ; Γ ` s : σ, using Point 3 when needed. �

4.2 Type Soundness and Type Preservation
Using the properties on size and sensitivities annotations detailed
in the previous section, we are now ready to prove the usual prop-
erties we want a programming language to enjoy: substitution, type
preservation, and progress.

4.2.1 Theorem [Substitution]: If φ; Φ; Γ, x : !Rτ ` e : σ and
φ; Φ; ∆ ` g : τ , then φ; Φ; Γ +R ·∆ ` e{g/x} : σ.

Proof: By induction on the derivation proving φ; Φ; Γ, x : !Rτ `
e : σ. �

The proof of the Substitution Lemma is straightforward, except
for the management of the term variable environments. The proof
of Type Preservation, however, is not as straightforward because
it requires managing the constraints and the size and sensitivity
annotations in various places.

4.2.2 Theorem [Type Preservation]:

1. If ` e : σ and e 7→ e′, then ` e′ : σ.
2. If ` s : σ and s 7→ s′, then ` s′ : σ.

Proof: Part (1) proceeds by induction on the derivation proving
` e : σ and case analysis on the possible derivations for e 7→ e′,

using the Substitution Lemma (4.2.1). Lemmas (4.1.1) and (4.1.2)
are needed when the step taken comes from a dependent pattern
matching rule. Part (2) now follows by induction on the derivation
proving ` s : σ and case analysis on the possible derivations for
s 7→ s′, using Point 1 when needed. �

We can also prove Progress as usual:

4.2.3 Theorem [Progress]:

1. If ` e : σ, then either e 7→ e′, or e is a value.
2. If ` s : σ, then either s 7→ s′, or s is final.

Proof: Both parts proceed by induction on the given derivation,
using part (1) as needed in part (2). �

5. Metric Preservation and ε-Differential Privacy
The design of the DFuzz type system is intimately related to the
metric relation we present in this section. This connection is cap-
tured by the Metric Preservation Theorem (5.2.7), which states that
the evaluations of two well typed expressions at a given distance
result in two values at the same distance or less.

5.1 Metric Relations
To formalize the notion of sensitivity, we need a metric relation on
programs and states that captures an appropriate notion of “infor-
mation distance” for each type. For this purpose, we first introduce
a metric relation∼r on values and final states, and then extend it to
a metric relation≈r on expressions and states through substitutions
of related values. Concretely, we begin with metric judgments on
values and final states

` v ∼r v′ : σ ` f ∼r f ′ : σ

asserting, respectively, that values v, v′ and final states f , f ′ are
related at type σ and that they are no more than r apart, where
r ∈ R≥0.



Using these metric judgments, we can also relate substitutions
of values for variables in an environment Γ. First, we need some
notation. Let Γ◦ be the environment obtained from Γ as follows:

Γ◦ = {xi : σi | xi : !Riσi ∈ Γ}
Suppose that γ is a vector of positive reals indexed by variables in
dom(Γ), i.e. γ = (x1 := r1, . . . , xn := rn). Then, we also define
a metric judgment with shape:

` δ ∼γ δ′ : Γ◦

This asserts that the substitutions δ and δ′ of values for the variables
in dom(Γ) are related at the types described by Γ◦, and that they
are no more than γ apart. That is, for every value vi = δ(xi) and
v′i = δ′(xi) we have ` vi ∼γ(xi) v

′
i.

Finally, we have judgments for expressions and states:

Γ ` e ≈r e′ : σ Γ ` s ≈r s′ : σ

These assert that the expressions e, e′ and states s, s′ are related
at the type σ, and that they are no more then r apart, in the type
environment Γ.

Given an environment Γ = (x1 : !R1σ1, . . . , xn : !Rnσn)
and a variable-indexed vector of positive reals γ = (x1 :=
r1, . . . , xn := rn), we define γJΓK as

∑n
i=1 ri · JRiK. By defi-

nition, γJΓK can assume values in R≥0 ∪ {∞}. In what follows,
we will be particularly interested in the cases where γJΓK is finite.

All these metric judgments are defined inductively by the rules
in Figure 9 where |b14b2| is the size of the symmetric difference
between the two databases b1 and b2. It is worth noting that the
metric on expressions considers only expressions that are typable
with no constraints and no free size variables. This ensures that the
index r in the relations ∼r and ≈r is actually a value r ∈ R≥0.

The metric presented here, like the one used in [33], differs
significantly from the one presented in [34] in its treatment of non-
value expressions and states. In particular, we do not require the
relation on expressions to be closed under reduction. This makes
the proof of metric preservation easier, and, as we will see, it is
sufficient to ensure differential privacy.

5.2 Metric Preservation
The Metric Preservation Theorem (5.2.7), which we present at
the end of this section, can be seen as an extension of the Type
Preservation Theorem (4.2.2). We can read it as asserting that the
evaluation of expressions and states preserves not only their types
but also the distances between related input values, up to a constant
factor given by the metric relation.

The proof of the metric preservation theorem involves five ma-
jor steps. The goal of these steps is to ensure that the different met-
ric relations respect the properties of the type system. The first step
is to show that the metric on expressions and states internalizes a
sort of weakening:

5.2.1 Lemma:

1. If ∆ ` e ≈r e′ : σ and r ≤ p, then ∆ ` e ≈p e′ : σ.
2. If ∆ ` s ≈r s′ : σ and r ≤ p, then ∆ ` s ≈p s′ : σ.

Proof: The proof of (1) is by inversion on the rule proving ∆ `
e ≈r e′ : σ, using the fact that, if ` v ∼r′ v′ : τ and r′ ≤ p′, then
` v ∼p′ v′ : τ . The base case of (2) follows from (1); the inductive
case follows directly by induction hypothesis. �

The second step is to show that the metric relation is well
behaved with respect to the subtyping relation. This is formalized
by the following lemma.

5.2.2 Lemma [Subtyping on metrics]:

1. If ` e ≈r e′ : σ, and ∅; ∅ ` σ v τ , then ` e ≈r e′ : τ .

2. If ` s ≈r s′ : σ, and ∅; ∅ ` σ v τ , then ` s ≈r s′ : τ .

Proof: (1) by induction on the derivation proving ` e ≈r e′ : σ;
(2) by induction on the derivation proving ` s ≈r s′ : σ. �

The third technical lemma is an intermediate step to show that
the two metric relations ∼r and ≈r coincide on expressions and
states that happen to be values and final states, respectively.

5.2.3 Lemma:

1. Suppose ∅; ∅; Γ ` e : τ . If ` δ1 ∼γ δ2 : Γ◦ and δ1e is a value,
then δ2e must also be a value, and ` δ1e ∼γJΓK δ2e : τ .

2. Suppose ∅; ∅; Γ ` s : τ . If ` δ1 ∼γ δ2 : Γ◦ and δ1s is final,
then δ2s must also be final, and ` δ1s ∼γJΓK δ2s : τ .

5.2.4 Corollary:

1. ` v ≈r v′ : τ iff ` v ∼r v′ : τ .
2. ` f ≈r f ′ : τ iff ` f ∼r f ′ : τ .

The last important property that the metric inherits from the
DFuzz type system is a substitution property on the judgments
involving the relation ≈r .

5.2.5 Lemma [Substitution into ≈]: The following rule is admis-
sible:

∆1 ` e1 ≈r1 e′1 : τ1 ∆2, x
′ : !Rτ1 ` e2 ≈r2 e′2 : τ2

R ·∆1 + ∆2 ` e2{e1/x} ≈r1JRK+r2 e
′
2{e′1/x} : τ2

Combining these four results, we can prove the main lemma:

5.2.6 Lemma [Metric Compatibility]: Suppose ` δ ∼γ δ′ : Γ◦

such that γJΓK ∈ R≥0. Then:

1. If ∅; ∅; Γ ` e : σ and δe 7→ g, then ∃g′. δ′e 7→ g′ and
` g ≈γJΓK g

′ : σ.
2. If ∅; ∅; Γ ` s : σ and δs 7→ sf , then ∃s′f . δ′s 7→ s′f and
` sf ≈γJΓK s

′
f : σ.

Proof: By induction on the typing derivation proving ∅; ∅; Γ `
e : σ and ∅; ∅; Γ ` f : σ, respectively, with further case analysis
on the evaluation step taken and using Corollary (5.2.4) and the
Substitution Lemma (5.2.5). �

The Metric Compatibility lemma is the main ingredient we
need to prove that well-typed programs map related input values
to related output values:

5.2.7 Theorem [Metric Preservation]:

1. If ` e ≈r e′ : σ and e 7→ ef , then ∃e′f . e′ 7→ e′f and
` ef ≈r e′f : σ.

2. If ` s ≈r s′ : σ and s 7→ sf , then ∃s′f . s′ 7→ s′f and
` sf ≈r s′f : σ.

Proof: (1) By inversion on the rule proving the judgment ` e ≈r
e′ : σ, using the Metric Compatibility Lemma (5.2.6); (2) by
induction on the derivation proving the judgment ` s ≈r s′ : σ,
again using Lemma (5.2.6). �

We can then make a corresponding statement about the com-
plete evaluation ↪→ of two expressions or two states, where ↪→ is
the reflexive, transitive closure of the step relation 7→:

5.2.8 Theorem [Big-Step Metric Preservation]:

1. If ` e ≈r e′ : σ and e ↪→ v, then there exists v′ such that
e′ ↪→ v′ and ` v ∼r v′ : σ.

2. If ` s ≈r s′ : σ and s ↪→ f , then there exists f ′ such that
e′ ↪→ f ′ and ` f ∼r f ′ : σ.



∅; ∅; ∅ ` v : σ

` v ∼0 v : σ

∅; ∅; ∅ ` f : σ

` f ∼0 f : σ

∅; ∅; ∅ ` n : N[S]

` n ∼0 n : N[S]

∅; ∅; ∅ ` r : R[R]

` r ∼0 r : R[R]

∅; ∅; ∅ ` nil : L(σ)[0]

` nil ∼0 nil : L(σ)[0]

` v1 ∼r1 v′1 : σ ` v2 ∼r2 v′2 : L(σ)[S]

` cons[S](v1, v2) ∼r1+r2 cons[S](v′1, v
′
2) : L(σ)[S + 1]

` v ∼r v′ : σ r ≤ r′

` v ∼r′ v′ : σ

|r1 − r2| = r

` r1 ∼r r2 : R
|b14b2| = r

` b1 ∼r b2 : db

x : !Rσ ` e ≈r e′ : τ

` λx.e ∼r λx.e′ : !Rσ( τ

x : !∞σ ` e ≈r e′ : σ

` fix x.e ∼r fix x.e′ : σ

` v ∼r v′ : σ{I/i}
` pack(v, I) as ∃i : κ.σ ∼r pack(v′, I) as ∃i : κ.σ : ∃i : κ.σ

∀ ` R : κ ` v{R/i} ∼r v′{R/i} : σ{R/i}
` Λi.v ∼r Λi.v′ : ∀i : κ.σ

| ln(ri/r
′
i)| ≤ s (∀i)

` (r1, . . . , rn) ∼s (r′1, . . . , r
′
n) : P[n]

` p ∼r p′ : P[n] ` fi ∼s f ′i : τ (∀i)
` {p, (f1, . . . , fn)} ∼r+s {p′, (f ′1, . . . , f ′n)} : τ

` p ∼r p′ : P[n] ` ei ≈s e′i : #τ (∀i)
` {p, (e1, . . . , en)} ∼r+s {p′, (e′1, . . . , e′n)} : #τ

` p ∼r p′ : P[n] Γ ` si ≈s s′i : τ (∀i)
Γ ` {p, (s1, . . . , sn)} ≈r+s {p′, (s′1, . . . , s′n)} : τ

Γ ` e ≈r e′ : #τ
Γ ` do e ≈r do e′ : τ

` δ1 ∼γ δ2 : Γ◦ ∅; ∅; Γ,∆ ` e : σ

∆ ` δ1e ≈γJΓK δ2e : σ

` vi ∼ri v′i : σi (∀i)
{v1/x1, · · · , vn/xn} ∼(x1:=r1,··· ,xn:=rn) {v′1/x1, · · · , v′n/xn} : (x1 : σ1, . . . , xn : σn)

Figure 9. Metric Rules

5.3 Well-Typed Programs are ε-Differentially Private
The Big-Step Metric Preservation Theorem (5.2.8) ensures that
programs map related inputs to related outputs. Combined with the
properties of the probability layer, this allow us to show that well-
typed programs are differentially private.

To formalize this, we need to define the probability Prf [v] that
a final state f yields a value v. We recursively define:

Prdo return v′ [v] =

{
1 if v = v′

0 otherwise

Pr{(p1,...,pn),(f1,...,fn)}[v] =

n∑
i=1

pi Prfi [v]

Note that, by the typing rule for probabilistic states ({s}), the
tuples (p1, . . . , pn), (f1, . . . , fn) must have the same length. The
metric on probability distributions is carefully chosen so that the
metric on final states corresponds to the relation on probability
distributions needed in the definition of differential privacy.

5.3.1 Lemma: Let ` f : σ and ` f ′ : σ be two closed final states
such that f ∼r f ′ : σ for some r ∈ R≥0. Then, for every value
` v : σ,

Prf [v] ≤ erPrf ′ [v].

Thus, we can show that the type system can verify that a program
is ε-differentially private.

5.3.2 Theorem [ε-Differential Privacy]: The execution of any
closed program e such that

` e : !εσ( #τ

is an ε-differentially private function from σ to τ . That is, for all
closed values v, v′ : σ such that ` v ∼r v′ : σ, and all closed
values w : τ , if do(e v) ↪→ f and do(e v′) ↪→ f ′, then

Prf [w] ≤ erεPrf ′ [w].

Proof: By using the fact that ` {v/x} ∼(x:=r) {v′/x} : (x : σ),
we have that ` do(e x){v/x} ≈rε do(e x){v′/x} : τ . So, by the
Big-step Metric Preservation Theorem (5.2.8), we obtain f ≈rε
f ′ : τ . We conclude by Corollary (5.2.4) and Lemma (5.3.1). �

The above theorem shows that in order to ensure that the execution
of a program e corresponds to an ε-differentially private random-
ized function from values in σ to values in τ , it is sufficient to check
that the program e has a type of this form:

` e : !εσ( #τ

5.4 Primitive Operations for Privacy
As outlined in Section 3, one important property of DFuzz is that
it can be extended by means of primitive operations. In particular,
we are interested in adding two basic building blocks, allowing us
to build more involved differentially private examples. The first
operation we add is the Laplace mechanism (Proposition (2.4)),
with the following signature:

add noise : ∀ε : υ.R[ε]→ !εR( #R

Note that, unlike the version presented in Fuzz, this primitive allows
the level of noise (and thus, the level of privacy) to be specified by
the user.

Another primitive operation that fits well in our framework is
the exponential mechanism [28]

exp noise :∀s : υ, ε : υ.R[s]→ Bag(σ)→ (σ → !sdb( R)

→ R[ε]→ !εdb( #σ (1)

where Bag(σ) is a primitive type representing a multiset of ob-
jects of type σ. The exponential mechanism takes a set of possible
outputs, a quality score that assigns to each element in the range a
number (depending on the database), and the database itself. The
quality score is at most s-sensitive in the database, and here we al-
low this sensitivity to be passed in as a parameter. The algorithm
privately outputs an element of the range that approximately maxi-
mizes the quality score.

6. Case Studies
To illustrate how DFuzz’s dependent types expand the range of
programs that can be certified as differentially private, we now
present four examples of practical algorithms that can be imple-
mented in DFuzz, but not in Fuzz. Each algorithm is taken from a
different paper from the differential privacy literature (specifically,
[4, 18, 19, 27]). The first three algorithms rely on the following new
feature that is enabled by DFuzz’s dependent types:



Iterative privacy: The ability to express a dependency between
the total privacy cost of a function and a parameter that is
chosen at runtime, such as a number of iterations.

The last example illustrates how allowing slightly more complex
sensitivity annotations can increase the expressivity, and it also
shows another important use for dependent types:

Privacy-utility tradeoff: The ability of a function to control its
own privacy cost, e.g., by scaling the precision of an iterated
operation to make the total cost independent of the number of
iterations.

We are experimenting with a prototype implementation of DFuzz,
and we present the examples in the actual syntax used by the proto-
type, an extension of Fuzz that closely follows the concrete syntax
from Figure 2 (for instance, we write sample x=e; e’ to denote
let #x = e in e′); we only omit instantiations of size/sensitivity
terms for brevity. The examples also use some additional con-
structs, such as (a,b) for tensor products of types a and b, with as-
sociated primitive operations. Details of these extensions are avail-
able in [14].

6.1 Iterative Privacy
k-means [4] Our first example (Figure 10) is k-means clustering,
an algorithm from data mining that groups a set of data points
into k clusters. Given a set of points and an initial guess for the
k cluster centers, the algorithm iteratively refines the clusters by
first associating each point with the closest center, and then moving
each center to the middle of its associated points; the differentially
private version ensures privacy by adding some noise to the refined
centers. The k-means algorithm can be implemented in DFuzz as
follows: Here, iterate is a caller-supplied procedure performing

function kmeans
(iters : Nat[i]) (eps : num[e])
(db :[3 * i * e] (num,num) bag)
(centers : list(num,num)[j])
(iterate : num[e] -> (num,num) bag -o[3*e]
list(num,num)[j] -> Circle list(num,num)[j])

: Circle list(num,num)[j]
{
case iters of

0 => return centers
| n + 1 => sample next_centers =

kmeans n eps db centers iterate;
iterate eps db next_centers

}

Figure 10. k-means in DFuzz

an update of the centers (details omitted for brevity).
Note that the sensitivity of kmeans in the database db depends

on two other parameters: the number of iterations [i] and the
privacy cost per iteration [e] that the analyst is willing to tolerate.
This is enabled by the dependent types in DFuzz; in contrast, Fuzz
is only able to typecheck a simplified version of k-means in which
both parameters are hard-coded.

Iterative Database Construction [19] Our second example (Fig-
ure 11) is an algorithm that can efficiently answer exponentially
many queries with good accuracy. This is done by first construct-
ing a public approximation of the private database, which can then
be used to answer queries without further privacy cost. IDC builds
the approximation iteratively: given an initial guess, it uses a pri-
vate distinguisher (PA) to find a query that would be inaccurate on

the current approximation and then applies a database update algo-
rithm (DUA) to refine the approximation. PA and DUA are parame-
ters of the algorithm, and the sensitivity of an IDC instance depends
on the sensitivities of its PA. This can be expressed in DFuzz as fol-
lows: Several choices for PA and DUA have been proposed in the

function IDC
(iter : Nat[i]) (eps : num[e])
(db :[2 * i * e] db_type) (qs : query bag)
(PA : (query bag) -> approx_db

-> db_type -o[e] Circle query)
(DUA : approx_db -> query -> num -> approx_db)
(eval_q : query -> db_type -o[1] num)
: Circle approx_db {
case iter of

0 => return init_approx
| n + 1 =>

sample approx = (IDC n eps db qs PA DUA);
sample q = PA qs approx db;
sample actual = add_noise eps (eval_q q db);
return (DUA approx q actual)

}

Figure 11. Iterative Database Function in DFuzz

literature; some can be written directly in DFuzz (e.g., the expo-
nential distinguisher from [22]), and others can be added as trusted
primitives (e.g., the sparse distinguisher from [35]). By contrast,
a parametric IDC cannot be written in plain Fuzz because there is
no way to express the dependency between the sensitivity of the
PA/DUA and the sensitivity of the overall algorithm.

Cumulative Distribution Function [27] Our third example (Fig-
ure 12) is an algorithm that computes the CDF function. Given
a database of numeric records and a list of buckets defined by
cutoff values, it computes the number of records in each bucket.
[27] presents three variants of this algorithm with different pri-
vacy/utility tradeoffs, only one of which was previously supported
in Fuzz. To understand why, consider the following version, imple-
mented in DFuzz: Note that the sensitivity in this version depends

function cdf
(eps : num[e]) (buckets : list(num)[i])
(db :[i * e] num bag) : Circle list(num)[i]
{

case buckets of
[] => return []

| (x :: y) =>
let (lt,gt) = bag_split (fun n => n<x) db;
sample count = add_noise eps (bag_size lt);
sample bigger = cdf eps y gt;
return (count :: bigger)

}

Figure 12. Cumulative Distribution Function in DFuzz

on the number of cutoff values or “buckets.” Since Fuzz cannot cap-
ture such a dependency, this CDF variant is not just impossible to
write in Fuzz—it cannot even be added as a trusted primitive, since
there is no way to express its type signature. In contrast, DFuzz
can directly support this program, and it could also support the last
version in [27] with a small extension that we discuss in Section 8.



6.2 Privacy-Utility Tradeoff
Our fourth and most complex example shows how DFuzz enables
programmers to write functions that control their own privacy cost,
and it also illustrates how small extensions to the language for sen-
sitivity annotations can further increase expressivity. The extension
we use here introduces a new operation R1 �̃ R2 on sensitivity
terms R1 and R2 that provides a limited form of division. The in-
terpretation is extended accordingly as follows:

JR1 �̃ R2Kρ=
r

s
if JR1Kρ=r ∧ JR2Kρ=s ∧ r, s /∈{0,∞}

JR1 �̃ R2Kρ=0 if JR1Kρ = 0 ∨ JR2Kρ =∞

JR1 �̃ R2Kρ=∞ otherwise

The behavior of the �̃ operator is different from that of the ordinary
division operator: �̃ does not enjoy the usual properties of division
with respect to multiplication and addition, i.e., it is not the inverse
of multiplication, and it does not enjoy the usual distributivity laws.
However, it does have two key properties. First, Lemma (3.1) still
holds for the system that includes �̃. If the usual division ÷ were
added instead, the interpretation would no longer be total because
r÷0 and∞÷∞ are in general undefined when÷ is the inverse of
·̂ and enjoys the usual distributivity laws. The choice of �̃ ensures
the preservation of the metatheoretic results of Sections 4 and 5.
Second, the interpretation of �̃ satisfies the following inequality
(the need for which will become apparent shortly) for every ρ:

J(R1 �̃ (R2 + 1)) ·R2Kρ ≤ JR1Kρ (2)

In terms of �̃, we can add a safe division primitive to the language
for terms:

div : ∀i : υ.∀j : υ.R[i]→ R[j + 1]→ R[i �̃ (j + 1)]

Note that the div operation is simply a restriction of the usual
division to positive real numbers that we make total by restricting
the domain of the denominator to reals greater than or equal to 1.

k-medians [18] With this extension, we can implement our fourth
example (Figure 13): an algorithm for k-medians, a classic prob-
lem in combinatorial optimization. Given a database V of locations,
with distances between locations, a desired number k of (say) fac-
tories to build, and a private demand set D ⊆ V , the goal is to
select a set F ⊆ V of k locations to minimize the cost, defined to
be the sum of the distances from each demand point to the closest
factory. In the program, the distances are given implicitly via the
cost function, which maps sets of factory locations to costs. The al-
gorithm starts with an initial random choice F0 of k locations and
runs several iterations, each time using the exponential mechanism
(Equation (1) in Section 5.4) to find the best location to swap for a
location in the candidate set of factories. After building up a collec-
tion of candidate factory sets, the mechanism uses the exponential
mechanism once more to choose the best configuration.

The helper function kmedians_aux runs the main loop, which
repeatedly tries to improve the cost of a set of locations by replac-
ing a location from the set with one that is not in the set. The outer
kmedians function simply chooses an initial (random) set of fac-
tory locations and sets up the privacy and iteration constants.

The program uses several primitive functions for manipulating
bags: bagcontains checks the membership in bags, bagproduct
builds the Cartesian product of two bags, bagadd adds an element
to a bag, bagswap swaps two element in a bag, and bagselect
chooses subset of a given size from a bag uniformly at random. The
helper function score measures how much a swap can improve the
cost of a set of locations. It can also be written in DFuzz (see [14]).

The key challenge in implementing k-medians is that it scales
the privacy level of the exponential mechanism to achieve a con-

function kmedians_aux
(iter : Nat[i]) (F0 : (loc bag)) (delta : num[s])
(cost : (loc bag) -> (loc bag) -o[s] num)
(eps : num[e]) (V : loc bag)
(D :[e * (2 * s) * i] loc bag)
: Circle (loc bag, (loc bag) bag)
{

case iter of
| 0 => return (F0, (bag F0))
| x + 1 =>

sample pair = kmedians_aux x F0 delta cost
eps V D;

let (Fi, Fs) = pair;
let (_, F_comp) =

bagsplit (fun l => bagcontains V l) Fi;
swaps = bagproduct Fi F_comp;
sample best = exp_noise delta swaps

(score cost Fi)
(eps * (2 * delta)) D;

let (a, b) = best;
Fnew = bagswap a b Fi;
return (Fnew, bagadd Fs Fnew)

}

function kmedians
(T : Nat[i]) (delta : num[s]) (V : loc bag)
(cost : (loc bag) -> (loc bag) -o[s] num)
(D :[2 * e] loc bag) (eps : num[e])
(k : Nat[n]) : Circle (loc bag)
{

sample F1 = bagselect k V;
eps’ = div(div(eps,(T + 1)),(2 * delta)+1);
sample result = kmedians_aux T F1

delta cost eps’ V D;
let (_, Fs) = result;
exp_noise delta Fs cost eps D

}

Figure 13. k-medians in DFuzz

stant overall privacy cost, independent of the number of iterations.
To derive the correct type for kmedians, DFuzz must prove that,
in the call to the auxiliary function kmedians_aux, the sensitivity
of D is at most eps. This involves checking a subtyping application
that requires the following inequality between sensitivity terms:

((e �̃ (i+ 1)) �̃ (2 · s+ 1)) · (2 · s) · i ≤ e

This inequality follows from two applications of Equation (2).
Thus, with the additional �̃ operator, algorithms that scale their pri-
vacy cost depending on the number of iterations can be expressed
and verified in DFuzz, using dependent types.

7. Related Work
Differential privacy Our system provides differential privacy [12],
one of the strongest privacy guarantees that has been proposed
to date. Alternatives include randomization, l-diversity, and k-
anonymity, which are generally less restrictive but can be vulnera-
ble to certain attacks on privacy [24]. Differential privacy offers a
provable bound on the amount of information an attacker can learn
about any individual, even with access to auxiliary information.

PINQ [26] is an SQL-like differentially private query language
embedded in C#; Airavat [36] is a MapReduce-based solution using
a modified Java VM. Both PINQ and Airavat check privacy at
runtime, while DFuzz uses a static check. The other previous work



in this area is Fuzz [20, 33, 34], on which DFuzz is based. DFuzz
has a richer type system: while Fuzz uses linear types to track
sensitivity, DFuzz uses a combination of linear indexed types and
lightweight dependent types, which substantially expands the set of
differentially private queries that can be certified successfully.

Another recent language-based solution is CertiPriv [3]. This
is a machine-assisted framework—built on top of the Coq proof
assistant—for reasoning about differential privacy from first prin-
ciples. CertiPriv can certify even more queries than DFuzz, includ-
ing queries that do not rely on standard building blocks such as
the Laplace mechanism—indeed, it can be used to prove the cor-
rectness of the Laplace mechanism itself. However, this comes at
the cost of much higher complexity and less automation, making
CertiPriv more suitable for experts who are expanding the bound-
aries of differential privacy. In contrast, DFuzz’s certification is au-
tomatic, allowing it to target a broader class of potential users.

Other work in this area include Xu [39], who considered differ-
ential privacy in a distributed setting, using a probabilisitc process
calculus, and Mohan et al. [29], who introduce a platform for pri-
vate data analysis that optimizes error for certain queries.

Linear dependent types Linear types, inspired by Girard’s linear
logic [15], have emerged as key tools to support fine grained rea-
soning about resource management [37]. In this context, the idea of
using indexed modalities !p for counting multiple uses of the same
resource, as we do, emerged early on. Bounded Linear Logic [16]
introduced modalities indexed by polynomial expressions. Those
are similar to our sensitivity annotations with the essential differ-
ence that they are polynomials over natural numbers, while we con-
sider polynomials over the reals augmented with∞. This approach
has been extended in [9] by constrained universal and existential
quantifiers, providing mechanisms for polymorphism and abstrac-
tion over polynomial expressions similar to the ones made available
by our quantifiers over size and sensitivity variables.

Different forms of lightweight dependent types form the basis
for programming languages such as Dependent ML, ATS, and
Epigram. Moreover, they have also started to be incorporated in
more standard programming languages, such as Haskell [40]. In
all these approaches the types can express richer properties of the
program that can then be ensured automatically by type checking.

ATS [7] is a language that combines linear and dependent types.
Its type system is enriched with a notion of resources that is a
type-level representation of memory locations. The management
of location resources uses a linear discipline. This aspect makes
ATS useful for reasoning about properties of memory and pointers.
However, linear types as used in ATS are not enough to reason
about the sensitivity of programs.

Linear indexed types and lightweight dependent types have
also been combined in [8] with the aim of providing a general
framework for implicit complexity. The approach in [8] is similar
in spirit to the one developed in the current paper; however, it
considers only type-level terms that represent natural numbers,
and its typing judgments are parametric in an equational program
providing for the semantics of the type-level language. Moreover,
[8] allows a further dependency between different modal operators
that is not needed for our analysis. More recently, Krishnaswami
et al. [23] proposed a language that combines linear (non-indexed)
types with dependent types in order to provide program modules
with a refined control of their state.

Related notions of privacy and sensitivity The study of database
privacy and statistical databases has a long history. Recent work in-
cludes Dalvi, Ré, and Suciu’s study of probabilistic database man-
agement systems [10], and Machanavajjhala et al.’s comparison
of different notions of privacy with respect to real-world census
data [25].

Quantitative Information Flow is concerned with how much one
piece of a program can affect another, but measures this in terms
of how many bits of entropy leak during one execution. While
Differential Privacy and Quantitative Information Flow are clearly
related concepts, the question of establishing formal relations be-
tween them has been approached only recently [1, 2].

Provenance analysis in databases tracks the input data actually
used to compute a query’s output, and is also capable of detecting
that the same piece of data was used multiple times to produce a
given answer [17].

Palamidessi and Stronati [31] recently proposed a constraint-
based approach to compute the sensitivity of relational algebra
queries. Their analysis is able in particular to compute the exact
sensitivity for a wide range of queries. In contrast, the goal of our
approach is to provide an upper bound on the sensitivity not only
of relational queries but also for higher order functional programs.

Chaudhuri et al. in [6] study automatic program analyses that
establish sensitivity (which they call robustness) of numerical pro-
grams. Their approach can also used to ensure differential privacy,
although they do not study this application in depth. Our approach
differs in that we ensure differential privacy through a logically mo-
tivated type system, rather than a program analysis.

8. Conclusions and Future Work
We have presented a new core language, DFuzz, for differentially
private queries. Like its predecessor, Fuzz, DFuzz has a type sys-
tem with strong metatheoretic properties, which guarantee that all
queries of a certain type are differentially private. The key nov-
elty in DFuzz is a lightweight form of linear dependent types that
track size and sensitivity information; this considerably expands
the range of programs that can be certified as differentially private.
We have demonstrated the expressivity of DFuzz using four exam-
ple algorithms from the differential privacy literature that can be
implemented in Fuzz only in greatly simplified form, or not at all.

Prototype We are currently working on an algorithmic version
of DFuzz and a prototype implementation. The key implementa-
tion challenge is related to checking the subtype relation. A nat-
ural approach to this problem is to generate numeric and logical
constraints that would have to be satisfied in order to type the pro-
gram, and to then pass these constraints to an external solver. In the
case of DFuzz, some of the constraints are over real numbers, but
they are of a form that is supported by the Z3 solver [11]. Since
DFuzz’s additional constructs and annotations are erasable at run-
time, a prototype can share a backend with Fuzz, and is thus able to
take advantage of Fuzz’s defenses against side channels [20].

Possible extensions The languages for size and sensitivity anno-
tations we have used in this paper are fairly restrictive, but this is
merely a design choice, and not an inherent limitation of the ap-
proach. As we have shown in the k-medians example, allowing
more complex size and sensitivity annotations can increase the ex-
pressivity, though it may also make the generated constraints harder
to solve.

There are other simple increments to the annotation languages
that would increase DFuzz’s expressivity. For example, [27] pro-
vides a higher-utility algorithm for the cumulative distribution
function that uses a divide-and-conquer approach. The resulting
sensitivity is proportional to the logarithm of the number of buck-
ets. If logarithms of sizes were added to the annotation language,
it would become possible to implement this algorithm. (Of course,
this addition would again come at the cost of increasing the diffi-
culty of constraint solving.) Another possible direction would be to
include more general data types, as in [38], in addition to the pre-
cise types L(σ)[S] and N[S] we have focused on. For instance, the
private Facility Location algorithm, as presented in [18], is similar



to k-medians, but, instead of a fixed number of factories to build,
we are given a fixed cost per factory, and the goal is to minimize the
total cost. This algorithm requires recursion over generalized trees,
which we speculate could be implemented in DFuzz if support for
sized versions of these data types were added.

Limitations and future work We designed DFuzz to certify algo-
rithms for which the differential privacy property can essentially be
proven with a rich compositional sensitivity analysis to show that
the noise is drawn from an appropriate distribution. However, in the
differential privacy literature there are algorithms whose analysis
requires more involved reasoning. One example is the private ver-
sion of the Unweighted Vertex Cover algorithm that was presented
in [18]. One way to handle the analysis for this algorithm would
be to use the probabilistic relational reasoning that is the basis of
the CertiPriv framework [3]. The ability to reason about relations
between different programs and data, i.e., about closely neighbor-
ing databases, seems crucial to this approach. However, by using
the CertiPriv framework, one loses the ability to reason about dif-
ferential privacy in an automated way. One natural way to preserve
the automatic approach and to nevertheless expand the scope of the
analysis would be to combine the approach of DFuzz with a limited
form of relational reasoning.
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